ИССЛЕДОВАНИЕ НАПРЯЖЕННО-ДЕФОРМИРОВАННОГО СОСТОЯНИЯ МЕТАЛЛА ПРИ ПРОКАТКЕ РЕЛЬСОВ В УНИВЕРСАЛЬНЫХ КАЛИБРАХ

Литвинов Р.А. аспирант, Шилов В.А., д.т.н., профессор, Шварц Д.Л., к.т.н., доцент

Уральский государственный технический университет — УПИ имени первого Президента России Б.Н. Ельцина, Екатеринбург, Россия

При моделировании в <u>DEFORM-3D</u> формоизменения металла при прокатке рельсового профиля в универсальном калибре^{*)} одновременно исследовали деформированное и напряженное состояние металла в очаге деформации. Моделировали процесс прокатки в универсальной рабочей клети с диаметром горизонтальных валков 1300 мм и вертикальных валков 900 мм со скоростью 2,8 м/с при различных сочетаниях коэффициентов вытяжки по шейке λ_{u} , подошве λ_{n} и головке λ_{r} ($\lambda_{u}=\lambda_{n}=\lambda_{r}$; $\lambda_{u}=\lambda_{n}=\lambda_{r}$).

С учетом указанной исходной информации в системе DEFORM последовательно решали задачи, распределения интенсивности главных деформаций ε , напряжений σ , скоростей деформации и определения интегральных значений сил на горизонтальные и вертикальные валки. Результаты решения отображали на цветовых полях (эпюрах) распределения расчетных параметров (деформаций, напряжений, сил и т.п.) в поперечных и продольных сечениях раската.

На рис. 1 представлено распределение интенсивности деформации ε в поперечном сечении рельса, прокатываемого с одинаковыми и различными вытяжками по элементам профиля. Из анализа полученных данных следует, что наиболее благоприятное распределение интенсивности деформаций наблюдается при одинаковых коэффициентах вытяжки по шейке и фланцам (см. рис. 1, *a*). В таком случае по всему поперечному сечению шейки и на значительной глубине приконтактного слоя головки и подошвы с вертикальными валками получается одинаковое значение ε , составляющее 0,38. Это обеспечивает получение плотной и мелкозернистой структуры металла на большей части сечения рельсового профиля, что особенно важно для повышения прочности и износостойкости головки рельса. В средних слоях головки и подошвы интенсивность деформации получается ниже (до 0,3), а максимальное значение $\varepsilon = 0,5$ наблюдается в местах утяжки фланцев (точки P8 и P3 на рис. 1, *a*).

Рис. 1. Распределение интенсивности деформации в поперечном сечении рельсового профиля:

$$a - при \lambda_{m} = \lambda_{n} = \lambda_{r}; 6 - при \lambda_{m} > \lambda_{n} = \lambda_{r}; B - при \lambda_{m} < \lambda_{n} = \lambda_{r}$$

С увеличением коэффициента вытяжки шейки до 1,5 при прежних значениях $\lambda_{\Pi} = \lambda_{\Gamma} = 1,281$ (см. рис. 1, δ) существенно возрастает интенсивность деформации по всему сечению шейки (до 0,621 в области точек P4 – P5 – P6 – P11 – P12), а также на контакте с боковой поверхностью горизонтального валка (до 0,44 – 0,47 в точка P3 – P4). Однако снижается глубина проработки приконтактных слоев головки и подошвы с вертикальными валками. В целом распределение интенсивности деформации получается крайне неравномерным. При уменьшении λ_{μ} до 1,1 без изменения коэффициентов вытяжки по фланцам (см. рис. 1, ϵ) интенсивность деформации по всему сечению шейки снижается до величины $\bar{\epsilon} = 0,241 \div 0,289$, но существенно улучшается проработка металла практически по всему сечению головки и подошвы ($\bar{\epsilon} = 0,36 \div 0,4$ на большей части сечения обоих фланцев). При этом в отдельных точках, например, в местах утяжки фланцев (точки P8 и P3) интенсивность достигаем максимальных значений $\bar{\epsilon} = 0,7 \div 0,6$.

Изменение напряженного состояния металла в очаге деформации имеет общий характер для всех трех рассмотренных выше вариантов распределения коэффициентов вытяжки по элементам профиля и наиболее ярко проявляется в случае, когда $\lambda_{\rm m} > \lambda_{\rm n} = \lambda_{\rm r}$ (рис. 2). При входе раската в очаг деформации и при выходе из него имеется узкая зона напряжений $\overline{\sigma} = 100 \div 130$ МПа (зеленый цвет на эпюре). На большей части шейки и фланцев напряжения составляют $\overline{\sigma} = 150 \div 170$ МПа (желтый цвет). Максимальные напряжения величиной до 210 МПа (красный цвет) наблюдаются в местах соединения шейки и фланцев (точки P6 и P4), а также в местах утяжки фланцев (точки P3 и P8). В средней части очага деформации по шейке (окрестности точки P5) наблюдается увеличение $\overline{\sigma}$ до 180 – 190 МПа (розовый цвет). Однако в случаях, когда $\lambda_{\rm m} = \lambda_{\rm r}$ и $\lambda_{\rm m} < \lambda_{\rm n} = \lambda_{\rm r}$, такого увеличения практически не происходит. Общей закономерностью для всех трех вариантов является распоставимую с длиной геометрического очага деформации (голубой и бирюзовый цвета на рис. 2).

Система DEFORM 3D позволила рассчитать абсолютные значения и характер изменения сил, воздействующих в процессе прокатки рельсов на горизонтальные и вертикальные валки, а также валковую арматуру. На рис. 3 показана характерная кривая изменения силы на горизонтальные валки за время прокатки рельсового раската длиной 1800 мм. На кривой четко видны 3 характерных периода: вход раската в очаг деформации (0,0439 – 0,161 с), установившийся процесс прокатки (0,161 – 0,511 с) и выход полосы из валков (0,511 – 0,600 с). Аналогичные кривые получены для сил, действующих на вертикальные валки и вводные линейки.

Рис. 2. Распределение напряжений в очаге деформации при $\lambda_{III} = \lambda_{II} = \lambda_{III}$

Рис. 7. Изменение в течение прохода силы прокатки на горизонтальные валки

В таблице представлены расчетные значения сил при установившемся процессе прокатки рельсового профиля в рассчитанном универсальном калибре по рассмотренным выше режимам с различным сочетанием $\lambda_{\rm m}$, $\lambda_{\rm n}$ и $\lambda_{\rm r}$. Как видно из таблицы, при $\lambda_{\rm m} = \lambda_{\rm n} = \lambda_{\rm r}$ получаются в какой-то мере оптимальные значения сил. Увеличение вытяжки (обжатия) по шейке при неизменных λ_n и λ_r приводит к закономерному увеличению силы на горизонтальные валки и к снижению сил на вертикальные валки. И наоборот, уменьшение λ_{m} вызывает снижение сил на горизонтальные и увеличение на вертикальные валки. Полученные расчетные значения сил прокатки по величине сопоставимы с теоретическими и экспериментальными данными авторов работы [8]. Для предотвращения изгиба заднего конца раската при входе в валки требуются максимальные силы на линейку со стороны подошвы 155 кН и со стороны головки 76 кН, которые при изменении коэффициента вытяжки шейки уменьшаются.

Таблица

Расчетные значения сил, возникающих при прокатке рельсового профиля в универсальной клети, МН						
Коэффициенты		Силы на валки			Силы на вводные	
вытяжки					линейки	
$\lambda_{\rm m} = \lambda_{\rm r}$	λ_{m}	Горизон-	Вертикальные со	Вертикальные со	Со стороны	Со стороны
	_	тальные	стороны подошвы	стороны головки	подошвы	головки
1,281	1,281	3,45	1,17	0,623	0,155	0,076
1,281	1,500	4,37	1,09	0,577	0,109	0,049
1,281	1,100	1,96	1,49	0,680	0,089	0,037

Описанные выше закономерности, полученные при моделировании процесса прокатки в рассмотренном калибре, подтверждаются аналогичными расчетами в системе DEFORM 3D для любых других универсальных рельсовых калибров.